A Legacy Game for Project Management in Software
Engineering Courses

Jefferson Seide Molléri, Javier Gonzalez-Huerta, Kennet Henningsson
Software Engineering Research Lab Sweden, Blekinge Institute of Technology
Karlskrona, Sweden
{jefferson.molleri,javier.gonzalez.huerta, kennet.henningsson}@bth.se

ABSTRACT

Background: Software project management courses are becoming
popular for teaching software engineering process models and
methods. However, in order to be effective, this approach should be
properly aligned to the learning outcomes. Common misalignments
are caused by using a correct degree of realism or an appropriate
instruction level.

Objective: To foster students to acquire knowledge (theoretical
and practical) that enables them solving similar challenges to the
ones they will face in real-world software projects.

Methods: We prototype and validate a legacy game that simulates
the software development process. Students are required to plan and
manage a software project according to its specification provided
by the teachers. Teachers act as both customers and moderators,
presenting the challenges and guiding the students’ teamwork.
Results: Both students’ and teachers’ perception suggest that the
proposed game has potential to motivate the knowledge acquisition
through problem-solving. The feedback also suggests that some
measures must be taken to ensure the pedagogical alignment and a
fair game.

Conclusion: The lessons learned provide suggestions for adopting
this or similar games in the context of project courses. As further
work, we plan to describe and extend the game rules based on the
results of this application.

CCS CONCEPTS

- Social and professional topics — Software engineering ed-
ucation; « Software and its engineering — Software develop-
ment methods;

KEYWORDS

Education, Gaming, Software Development Process, Project Man-
agement Course

ACM Reference Format:

Jefferson Seide Molléri, Javier Gonzalez-Huerta, Kennet Henningsson. 2018.
A Legacy Game for Project Management in Software Engineering Courses.
In ECSEE’18: European Conference of Software Engineering Education 2018,
FJune 14-15, 2018, Seeon/ Bavaria, Germany. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3209087.3209094

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

ECSEE’18, June 14-15, 2018, Seeon/ Bavaria, Germany

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6383-9/18/06....$15.00
https://doi.org/10.1145/3209087.3209094

1 INTRODUCTION

Project management courses (PMC) are intended to provide stu-
dents with a dynamic environment that mirror the real-world chal-
lenges [5]. This problem-based learning (PBL) approach is sup-
ported by the constructivist theories for knowledge acquisition and
student-focused approach to teaching [10, 14].

A common issue related with the PMC approach is how to find
a balance between the level of realism and the relevance of the
contents students will learn [5, 10]. Another issue is whether the
students receive the appropriate guidance for problem-solving [14].

From our experiences in previous project courses, we would
also add another risk: which is that students are more focused on
the technical challenges of the project tasks [5]. Thus, they are
sometimes willing to “hack” the solution instead of focusing on the
software development practices and models they are intended to
be following. This permissive behaviour might prevent them from
experience and reflect about the intended learning outcomes (LOs).

Therefore, at Blekinge Institute of Technology (BTH), we are
currently developing a legacy game to expose students to a software
development project and the different software process models. The
game represent some of the challenges to be faced when dealing
with the planning and management of a real-life software project
without requiring students to develop the software system.

We piloted this game in the context of a software engineering
course at BTH, so as to first illustrate the development models, but
also aiming at gathering empirical evidence on how effective it
can be as a means for the students to learn and reflect about those
development models. This paper presents preliminary results after
piloting the legacy game in a Software Engineering course, as well
as students’ perception regarding the legacy game approach.

2 BACKGROUND & RELATED WORK
2.1 Pedagogical Philosophies

Problem-Based Learning (PBL) promotes active learning and
knowledge acquisition through group work [14, 23]. Students are
presented with a situation that requires a solution, whereas the
teachers act as supervisors (and sometimes simulated customers),
stirring the group toward a potential solution. The PBL takes several
meetings, and in the time between meetings, students should look
for deepen their knowledge regarding the problem.

The concepts above are connected to the “learn by doing” phi-
losophy [8] and early stages of design-implement experiences
[24]. These views favor relevant and practical learning and are
particularly useful for skill-oriented engineering courses/programs.
A further step on the design-implement framework comprises the
implementation of the potential solution in a “hands-on” approach.

https://doi.org/10.1145/3209087.3209094
https://doi.org/10.1145/3209087.3209094

ECSEE’18, June 14-15, 2018, Seeon/ Bavaria, Germany

PBL is a teaching practice related to the constructivist theories,
in which the learned is directly responsible for the knowledge
construction [9, 13], a.k.a. student-focused approach. It aims to
produce knowledge by connecting the students’ prior knowledge
to new facts and understanding. PBL extensively uses reflection,
critical thinking and experimentation as learning facilitators.
Kolb [17] describe those stages in an experiential learning cycle
(illustrated in Figure 1). In the first stage (i.e. doing it) the student
is faced with a new experience, herein the game challenge. In a
group, the student is foster to reflect on the challenge (stage 2) and
make sense of a candidate solution (stage 3). Finally, the student
applies the solution and gather its results. The cycle starts again,
as the student progresses into a deeper understanding of the topic.

Figure 1: Learning cycle by Kolb [17]

DOING IT
Concrete experience

7

PLANNING WHAT REFLECTING ON
TODO THE EXPERIENCE
Active experimentation Reflective observation

< -

MAKING SENSE OF
THE EXPERIENCE
Abstract Conceptualism

2.2 Project Management Courses

PMC has become increasingly popular in software engineering
education, particularly at the end of undergraduate and subse-
quent graduate programs [4, 22]. Ideally, PMCs should be aligned
to problem-based learning and related pedagogical philosophies
(see Section 2.1) but this is not always the case [10, 22].

The learning activities usually employed in PMCs are either
small toy examples that lack the real complexity of a real-world
project, or extensive real-client projects that are likely to overload
students with technical issues [5, 18]. Thus, there is a strong need
to achieve an ideal balance between realism and abstraction.

Flener [10] presents some of the risks and provide recommen-
dations for teachers willing to use this approach. Common issues
include i) ensure that students have the prior knowledge needed,
ii) enforce a limit on the size of groups and projects, and iii) align
the project activities to the LOs.

Moreover, some of the issues in the implementation of PMC are
likely due to an inconsistent relationship to the course’s learning
outcomes [4], and an inappropriate degree of supervision by the
facilitators [14]. Thus, there is an explicit need to align the LOs to
these pedagogical aspects.

2.3 Game-based Learning

Serious games have been used for teaching and learning in SE
programs, in particular topics such as project management [20,
21]. According to the reviews, this gaming approach contributes
to motivation and learning due to the relevance of the content
presented into the game. However, the validation of these game
strategies is mostly obtained through the students’ perception. Thus
we can not assume a significant impact on the learning performance.

J.S. Molléri et al.

Baker, Navarro and Hoek [1, 2] proposed an educational card
game that simulates a software engineering process. Problems and
programmers exemplifies some of the phenomena occurring in the
real-world through a high-degree of abstraction. It fits the limited
time constraints of a course session, thus allowing the students to
play the game several times facing different challenges each time.
It is a competitive game, thus poorly reflect the real-world environ-
ment in which project members are expected to work together.

RCAG, SimSE and SERPG are digital games that simulate the
software development process [3, 12, 19]. The interface provides a
comprehensive view of different aspects of the development process,
e.g. stakeholders, resources, project schedule. However, students
are limited to interact with the computer. In the real-world, we
expect the project members to interact and make decisions based
on collective reasoning.

A third alternative is an inwards-class game that integrates the
course’s teaching-learning activities (TLAs) and assessment tasks
(ATs). Jaramil [15], Klassen & Willoughby [16] proposed a game
as learning activity to teach the management aspects of software
development. These games use analogies that do not represent real
aspects of the software process, e.g. project planning

2.4 Legacy Games

All the games presented in the section above are intended to run in
a single class session. Thus, this setup is not entirely aligned to the
PBL approach, which requires the students: i) to search for candidate
solutions to a problem, ii) to critically analyze the candidates in
order to make a decision, iii) and finally to reflect on the impacts of
such potential solution. These are required skills to be trained in
Engineering education [6].

The newly forged legacy game concept [7] describes a board
game mechanic that is designed to change dynamically over the
course of a series of sessions. It takes key elements from role-playing
games, such as campaigns and storytelling. New game rules and
contents can be introduced during the execution of the game, and
similarly, old content may get overridden or removed. [11].

Therefore, a legacy game experience is likely to help integrating
the concepts of PBL into a project management course. We opted
to design such experience prototype and to pilot it in the context
of a Software Engineering (SE) course at BTH.

3 RESEARCH PROCESS
3.1 Objective

In previous instances of a PMC, instead of a game, the students
faced a real development task. This task was technically too difficult
for them, as most of them lack deep development experience. Thus,
through the development tasks, students sometimes did not achieve
the intended learning outcomes, as they were too focused on solving
the technical challenges.

Our main objective is, therefore, to propose a legacy game for a
PMC that represent challenges of a real-life software development
process. Students should handle tasks such as project planning,
effort estimation, and manage unexpected situations and uncer-
tainty. From a pedagogical perspective, by the end of the game we
expect the students to demonstrate the knowledge acquired with
this gaming experience.

A Legacy Game for Project Management in Software Engineering Courses

3.2 Context

The game was designed as part of a PMC on a Software Engineer-
ing course, comprising of 7.5 European Credit Transfer System
(ECTS). The overall goal of the course is to give the student basic
knowledge of software engineering and the software development
process, introducing the main phases of the development process,
the different software development models and practices and its
impact at product, process and organizational levels.

The course provides both theoretical knowledge and its applica-
tion in practical situations. Theoretical knowledge is provided in a
series of lectures covering themes such as requirements elicitation
and management, testing, architecture design, project planning and
project follow-up. The practical application requires the student
to participate in the planning of a small project. This project is an
interesting opportunity for designing and implementing the game.

We implemented a prototype legacy game during the period of
Fall 2017. 9 students divided into two teams took part of the game.
They were registered in a five years integrated engineering program
(300 ECTS) in Industrial Economy!, pursuing the specialization
on Software Engineering and IT. All of them are native Swedish
(although the teaching and the legacy game were conducted in
English), between 22-27 years old, 1/3 female and 2/3 male.

3.3 Game Design

We designed a prototype for the legacy game to take part in the
second half of the course once the theoretical contents had been
covered. In this way, the game challenges matches the knowledge
the students are going to be exposed to. The main teaching approach
for the legacy game is problem-based learning. Each game turn
takes part in a 2-to-4-hour workshop session and uses the students’
assignment deliverables as input.

During the workshop sessions, the teachers also explain the game
objectives and rules?. Teachers also present the project description
and the goal of the game to all teams. The project description
also includes the project resources (e.g. budget, workforce) and
constraints (e.g. time to deliver, business rules).

3.4 Gameplay

Each turn comprises five steps:

1. Each team submit a project plan. The team should main-
tain a document describing a project plan in accordance with the
learning objectives of the course. During the first round, the team
submits an initial version of this plan. On each subsequent round,
an updated version is submitted.

2. The teachers assess the project plan according to the learn-
ing objectives. If the students demonstrate a sounding project plan,
that adheres to the good practices and matches the needs for the
project, they are awarded bonuses for the upcoming game turn.
Students can also be penalized if their project plan omits certain re-
quired development activities (e.g., testing) or practices (e.g. sprint
retrospective). We have designed a set rubrics to assess both bonuses
and penalties>.

! Civilingenjor i Industriell Ekonomi
2The rules are available to download at https://goo.gl/10UvvB
3The rubrics are available as an appendix to the game rules in https://goo.gl/10UvvB

ECSEE’18, June 14-15, 2018, Seeon/ Bavaria, Germany

3. Each team rolls for uncertainty. During a workshop ses-
sion, the game mainly consists of the students rolling dices that rep-
resent the uncertainties of a software development project. Teachers
guide the students during the whole step, relating these uncertain-
ties to real examples, e.g. a penalty in the implementation could be
caused by a non-updated design or lack of requirements traceability.
The uncertainty values are then added to the bonuses/penalties
scored by the team’s project. This result represents how much the
actual process deviates from the original plan.

4. The teachers inform the teams about new events taking
place. They represent changes that are likely to occur in a real-
world software process, such as new requirements or resource
limitations. Teachers play the role of customers or product owners,
fostering students to negotiate some of the new challenges.

5. Each team updates their project plan. Finally, the teams
are asked to report the changes to project plan according to the
deviation and new events (Step 5). They are also suggested to make
any improvements they think are needed for the success of the
project.

Prior to the execution of the game, we defined a number of
turns based on the course schedule. If there are turns remaining, a
new turn begins. Otherwise, the game ends, and then the students
are asked to provide their reflections on the project together with
feedback about the gaming experience and lessons learning.

3.5 Execution

We have executed the game twice, for two different software devel-
opment processes, i.e. plan-driven, and agile software development.
The assignments and rubrics were slightly different in each case.
During the plan-driven exercise, the students were expected to
create a work breakdown structure (WBS) and detail the project
schedule. The agile instance included different challenges, such as
estimating based on story points by using planning poker, calculat-
ing velocity, managing technical debt, and planning releases. In the
agile instance, the students had to make informed decisions about
the different agile practices they adopted for their project.

It is important to note that the outcome of the game itself does not
relate to the course evaluations. So, the students were not penalized
if their project did not get any particular bonuses. In each session,
lectures provide feedback to students, expecting that they could
reflect on their choices and learn from the mistakes. The assessment
task was based on a written report in which the students had to
reflect about the pros and cons of each development model, as well
as a post-mortem analysis of both projects, in which they had to
reflect about what was the main cause of the eventual deviation to
the original plan.

4 RESULTS

4.1 Students’ Formative Assessment

During the game prototyping, the teachers conducted formative as-
sessments to collect opinions from the students. Both verbal inquire
and electronic forms were used. Eight out of the nine participants
answered electronic form’s open questions as follows:

1. What have you learned from the project planning game?
The responses enumerate aspects such as: how to design a soft-
ware project plan (mentioned by 4 students), how to manage the

https://goo.gl/1oUvvB
https://goo.gl/1oUvvB

ECSEE’18, June 14-15, 2018, Seeon/ Bavaria, Germany

deviations that can occur in a project due to uncertainties (2 men-
tions), trade-offs of the plan-driven method (1), project schedule (1)
prioritize tasks (1), design tools, e.g. class diagrams (1).

2. Please describe positive aspects of the game. Students
considered the game a fun experience (3 mentions), that mirrors
real-world cases (2) and their uncertainty aspects (1). Other answers
also mention the game as an alternative to theoretical lectures (1),
and an approach to learning-by-doing, mainly by addressing the
project mistakes (1).

3. Please describe negative aspects of the game. Students
described a few difficulties, such as: A) deviations are presented too
late during the game, make them hard to address; B) their project
mistakes are likely to increase the game difficulty; and C) the game
challenges are non-intuitive, thus difficult to relate to students with
few or no practical experience.

4. Do you think the game represents the challenges of a
real project? Most of the students answered that they could relate
the game to real cases, although they acknowledged lack of experi-
ence with real projects. One participant answered that “This is the
most real exercise I have done so far”. Another one mentioned that
real-world projects are likely to be even more complex.

5. If you were attending this course next year, would you
be willing to repeat the experience? Please justify your an-
swer. All the students answered yes. Some of them made clear their
expectations for further applications, e.g. A) more personalized /
flexible project options; B) run the game in parallel with a “hands on”
coding activities; and C) clear objectives by the project description.

These responses mainly indicate that students learned from and
also enjoyed the experience. The results mostly describe personal
experiences within the small group, and further investigations of the
learning performance when applied in a larger group are needed.

When inquired by the teachers, the participants expressed their
views verbally. They mentioned that the game mechanics were hard
to understand when first presented, but this issue does not affect
the course’s learning outcomes. We hypothesize that this problem is
mainly due a focused approach to present the rules, i.e. just the part
of the rules? related to the current session was presented. This was
an intentional design decision, since we wanted to avoid “defensive"
planing if the students knew the rules beforehand, but also to allow
students to experience uncertainty.

The students’ feedback also suggest that short time was given
between some of the workshop sessions. In particular, a series of 3
turns took place within a week (25, 27 and 29/Sept). This scenario is
likely to hinder the gameplay, as it does not provide enough time for
students update their project plan (Step 5). We plan to reschedule
the course to provide one-week turns for the legacy game.

4.2 Teachers’ Perception

After the game execution, the teachers met together to discuss the
students’ impressions and their performance about to the course
objectives. This was aiming to collect the teachers’ perceptions
of using the game in the forthcoming course instances. The main
results are:

For the proper execution of the game, it is necessary that the
students produce and deliver the course assignments in time. A

J.S. Molléri et al.

similar preparation was required from the teachers to assess the
project plan deliverables before each session.

After a few turns of the game, teachers reported that the stu-
dents start to improve their assignment’s deliverables motivated by
achieving a better score on the game task. Sometimes they were frus-
trated by not achieving bonuses, but overall the problem-solving
aspect seems to foster them to review the course material looking
for solutions.

The teachers acknowledge that some of the good results in some
occasions might be caused purely by chance, not due to better or
worse quality on their project plans i.e., the penalties were miti-
gated by good dice rolls. The teams also had the opportunities to
experiment different alternatives. Moreover, during some of the
workshop sessions, both teams worked side by side. This configu-
ration introduced a competitive aspect, but also let students notice
and learn from the others’ decisions.

The teachers’ collaboration during the workshop sessions were
absolutely necessary. They provided feedback for the teams, related
the game challenges with the theoretical knowledge, and ensured
that the learning environment was fair and positive to all. The
alignment sessions (peer assessing the project plans by two or more
teachers), was also considered as strongly positive.

Finally, the game environment allowed teachers to discuss better
with the students the results of their planning and decision-making.
One of the teachers also mentioned that the students are using the
knowledge they learned in the game in further course activities.

5 LESSONS LEARNED

A number of lessons learned were drawn from the game prototyp-
ing. They are derived from our observations during the game and a
reflection about the students’ assessment, as follows:

Identify the learning outcomes. The main objective of the
game is to provide the students with a simulated environment that
represent the challenges of a real project. This challenges, plus the
project plan they are expected to maintain should be aligned to
the LOs of the course. Teachers are also encouraged to identify
threshold concepts and make sure that they take part in the project
description.

Teachers’ participation. While students act as players, teach-
ers and lecturers take the role of the game moderator as well as
customers/product owners. This includes tasks such as organize the
game schedule, mediate questions regarding rules, and role-play
the product owner. In fact, they controlled most of the aspects of
the game, except the actions of the players/teams.

Course schedule. It is important that the workshop sessions
match the number of turns the game will be carry out. Teachers have
to adjust the time to deliver and project releases according to that,
e.g. a two-month project ends after four two-week sprint which
translates to four turns. There should be enough time for students
to create/update the project plan (see Step 5, Section 3.4), as well
as time for teachers to answer questions with regards to the game
dynamics (as moderators) and to the project (as customer/product
owners).

Theoretical knowledge. To promote fair gameplay, teachers
should plan lectures and provide extra course material addressing
theoretical knowledge related to the game challenges. In case of

A Legacy Game for Project Management in Software Engineering Courses

the lectures, they can be scheduled before the game execution, or
alongside the workshop sessions. It is also important that the course
covers the required knowledge and templates for the different de-
liverables required for the project plans.

Students’ teams. Different approaches can be used to assign
players to teams, e.g. complete randomization, matched pairs, flexi-
ble groups. We suggest that the teams have similar size, preferably
4 to 5 students. It is recommended that the teams do not change
during the gameplay.

Project description. Teachers should prepare a detailed doc-
ument containing the information about the project and details
about the project plan. Ideally, it should describe the desired fea-
tures, the project resources and constraints (e.g. budget and time to
deliver). This artifact should be presented according to the learning
objectives for the course.

Students’ project assessment. We strongly suggest using a set
of rubrics to assess the project plans. It is important to detail to
the students the bonus and penalties resulting from their project
assessment. Therefore, they feel encouraged to improve the plan
(see Step 4, Section 3.4) to achieve new bonuses and/or remove the
penalties for the forthcoming turn.

New challenges during the gameplay. It is suggested that
teachers provide an appropriate set of challenges considering the
team’s current situation during the game. The challenges should be
scaled down to overcome potential frustration when the students
are accumulating penalties or deviations to the planning.

The teams should also receive new resources to help them to
achieve the newly presented challenges, e.g. by shortening the time
to deliver, the product owner agree on hiring an extra developer
for the team (extra workforce). This rule is intended to keep the
balance of the game.

Ending the game. A successful project in the game should not
be a measure of a student’s performance and should not be related
to the student’s grade, and this should be communicated to the
students. A well-thought and critical reflection, however, is a good
opportunity for the teacher to collect feedback and provide the
students meaningful insights regarding their gameplay.

6 CONCLUSIONS

In this paper, we reported the prototype of a legacy game aim-
ing to represent the challenges of a software development project.
The game is proposed as a pedagogical tool for software project
management courses using a problem-based learning approach.

We piloted the game with students registered for a project man-
agement course. The participant’s assessment regarding this novel
approach was collected through verbal inquire and electronic sur-
vey, further compared to teachers’ perception. The legacy game
approach was perceived as a motivational environment for PMCs.

The most important contribution given is on a set of lessons
learned from the prototype game execution. They are an important
guide to improve the current game rules based on teachers’ and
students’ opinion. Alternatively, these lessons are applicable in
similar contexts, whenever teaching and gaming integration is
done within a project course.

As future work, we plan to extend the game rules to integrate the
game into a design-implement experience [24] in which students

ECSEE’18, June 14-15, 2018, Seeon/ Bavaria, Germany

may evolve the project plan into a real product. Further applications
are intended to validate the impacts of the proposed game in this
particular context.

REFERENCES

[1] Alex Baker, Emily Oh Navarro, and André Van Der Hoek. 2003. Problems and
Programmers: an educational software engineering card game. In Proceedings of
the 25th international Conference on Software Engineering. IEEE Computer Society,
614-619.

Alex Baker, Emily Oh Navarro, and Andre Van Der Hoek. 2005. An experimental

card game for teaching software engineering processes. Journal of Systems and

Software 75, 1-2 (2005), 3-16.

Fabiane Barreto Vavassori Benitti and Jefferson Seide Molléri. 2008. Utilizacao de

um RPG no ensino de gerenciamento e processo de desenvolvimento de software.

In WEI-Workshop sobre Educagao em Computagao. 258-267.

[4] David Broman, Kristian Sandahl, and Mohamed Abu Baker. 2012. The company

approach to software engineering project courses. IEEE Transactions on Education

55, 4 (2012), 445-452.

Bernd Bruegge, John Cheng, and Mary Shaw. 1991. A software engineering project

course with a real client. Technical Report. Carnegie-Mellon Univ Pittsburgh PA

Software Engineering Inst.

Edward Crawley, Johan Malmgqvist, Soren Ostlund, and Doris Brodeur. 2007.

Rethinking engineering education. The CDIO Approach 302 (2007), 60-62.

[7] Rob Daviau. 2017. Legacy Games: From 'Risk’ to "Pandemic’ to *SeaFall’ & Beyond.
(2017). https://www.gdcvault.com/play/1024259/Legacy-Games-From-Risk-to
Keynote at GDC 2017 - Game Developers Conference, San Francisco, California,
US [Accessed: 2018 01 12].

[8] John Dewey. 1897. My pedagogic creed. Number 25. EL Kellogg & Company.

[9] Maja Elmgren and Ann-Sofie Henriksson. 2014. Academic teaching. Studentlit-

teratur.

Pierre Flener. 2006. Realism in project-based software engineering courses:

rewards, risks, and recommendations. In International Symposium on Computer

and Information Sciences. Springer, 1031-1039.

[11] Board Game Geek. 2017. Glossary. (2017). https://boardgamegeek.com/wiki/

page/Glossary#toc120 [Accessed: 2018 01 12].

[12] Thomas Hainey, Thomas M. Connolly, Mark Stansfield, and Elizabeth A. Boyle.

2011. Evaluation of a Game to Teach Requirements Collection and Analysis in

Software Engineering at Tertiary Education Level. Computers & Education 56, 1

(2011), 21 - 35. http://miman.bib.bth.se/login?url=http://search.ebscohost.com/

login.aspx?direct=true&db=eric& AN=EJ902310&site=ehost-live

Graham D Hendry, Miriam Frommer, and Richard A Walker. 1999. Constructivism

and problem-based learning. Journal of further and higher education 23, 3 (1999),

369-371.

Woei Hung. 2011. Theory to reality: A few issues in implementing problem-based

learning. Educational Technology Research and Development 59, 4 (2011), 529-552.

Carlos Mario Zapata Jaramillo. 2014. Teaching software development by means

of a classroom game: The software development game. Developments in Business

Simulation and Experiential Learning 36 (2014).

Kenneth J Klassen and Keith A Willoughby. 2003. In-class simulation games:

Assessing student learning. Journal of Information Technology Education: Research

2 (2003), 1-13.

[17] David A Kolb. 2014. Experiential learning: Experience as the source of learning and

development. FT press.

Supannika Koolmanojwong and Barry Boehm. 2009. Using software project

courses to integrate education and research: An experience report. In Software

Engineering Education and Training, 2009. CSEET 09. 22nd Conference on. IEEE,

26-33.

Emily Oh Navarro and Andre Van Der Hoek. 2004. SimSE: an educational

simulation game for teaching the Software engineering process. In ACM SIGCSE

Bulletin, Vol. 36. ACM, 233-233.

Giani Petri, Christiane Gresse von Wangenheim, and Adriano Ferreti Borgatto.

2017. Quality of games for teaching software engineering: an analysis of empirical

evidences of digital and non-digital games. In Proceedings of the 39th International

Conference on Software Engineering: Software Engineering and Education Track.

IEEE Press, 150-159.

André Raabe, Eliana Santos, Lauriana Paludo, and Fabiane Benitti. 2013. Serious

Games Applied to Project Management Teaching. In Enterprise Resource Planning:

Concepts, Methodologies, Tools, and Applications. IGI Global, 1427-1451.

Paul Ralph. 2018. Re-imagining a Course in Software Project Management. In

Proceedings of 40th International Conference on Software Engineering: Software

Engineering Education and Training Track, Gothenburg, Sweden, May 27-June 3,

2018 (ICSE-SEET’18).

Henk G Schmidt. 1994. Problem-based learning: An introduction. Instructional

science 22, 4 (1994), 247-250.

[24] PW Young and S Hallstrém. 2007. Design-implement experiences and engineering

workspaces. In Rethinking Engineering Education. Springer, 102-129.

[2

[3

[5

G

=
2

[13

[14

[15

=
&

[18

[19

[20

[21

[22

[23

https://www.gdcvault.com/play/1024259/Legacy-Games-From-Risk-to
https://boardgamegeek.com/wiki/page/Glossary#toc120
https://boardgamegeek.com/wiki/page/Glossary#toc120
http://miman.bib.bth.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ902310&site=ehost-live
http://miman.bib.bth.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ902310&site=ehost-live

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Pedagogical Philosophies
	2.2 Project Management Courses
	2.3 Game-based Learning
	2.4 Legacy Games

	3 Research Process
	3.1 Objective
	3.2 Context
	3.3 Game Design
	3.4 Gameplay
	3.5 Execution

	4 Results
	4.1 Students' Formative Assessment
	4.2 Teachers' Perception

	5 Lessons Learned
	6 Conclusions
	References

