Ownership vs Contribution: Investigating the
Alignment Between Ownership and Contribution

Ehsan Zabardast, Javier Gonzalez-Huerta, and Binish Tanveer
Software Engineering Research Lab (SERL)
Blekinge Institute of Technology, Karlskrona, Sweden
ehsan.zabardast@bth.se, javier.gonzalez.huerta@bth.se, binish.tanveer @bth.se

Abstract—Software development is a collaborative endeavour.
Organisations that develop software assign modules to different
teams, i.e., teams own their modules and are responsible for
them. These modules are rarely isolated, meaning that there
exist dependencies among them. Therefore, other teams might
often contribute to developing modules they do not own. The
contribution can be, among other types, in the form of code
authorship, code review, and issue detection. This research
presents a model to investigate the alignment between module
ownership and contribution and the preliminary results of an
industrial case study to evaluate the model in practice. Our model
uses seven metrics to assess teams’ contributions. Initial results
suggest that the model correctly identifies misalignment between
ownership and contribution. The detection of misalignment
between ownership and contribution is the first step towards
investigating the impact it might have on the faster accumulation
of Technical Debt.

I. INTRODUCTION

The development of software-intensive products and ser-
vices has been evolving towards “componentising” architec-
tures. Nowadays, big software development organisations tend
to build their software products as a constellation of compo-
nents often developed by different teams. One example of this
trend is the wide adoption of the microservices architectural
style [1], [2].

Alignment between architecture and organisation, therefore,
plays a critical role [1], [3] in the development of large scale
software systems. According to Conway’s Law: Organisations
that design systems tend to produce designs that mimic the
communication structures of these organisations [4].

When we “componentise” (e.g., build the system using
microservices), the team constellation should be adapted to
minimise communication overhead. Although there are dif-
ferent approaches towards ownership and autonomy, software
development organisations usually rely on weak ownership
principle [5], which boils down to a given team owning a set of
components (or microservices). Ideally, that team is the owner
and responsible for that component and the main (or sole)
contributor to the code. However, when examining real-world
cases, that is seldom the case [6], [7]. In reality, a component
can be providing support to several business streams; it can be
developed by different teams and require the intervention of
specialised teams to ensure non-functional requirements (e.g.,
security and reliability). Therefore, although the component
will continue to be the responsibility of a team, the degree of
contribution to the component can vary a lot.

The degree of alignment between the code ownership (i.e.,
the fact that the team is appointed as officially responsible
for the quality of a given component or service [8]) and
contribution (i.e., the extent to which that team is the main
contributor for that particular product or service) can impact
the effectiveness and efficiency of all the teams involved. We
hypothesise that the misalignment between team ownership
and contribution can increase communication overhead and
can make, for example, the code review time or the lead time
to implement code changes longer. We also hypothesise that
the misalignment may impact the pace of TD accumulation
in services in which this misalignment is more acute. In
some cases, the owner team might only be holding the final
responsibility of acting as gate (quality) keepers. In other
words, the team members are not implementing the changes
but only making sure that the code introduced in the codebase
adheres to certain quality criteria and coding standards.

Let us suppose the owner team, after some time, loses
control over the code of a component they own. In that
case, it might also lose (partially) the ability to judge the
appropriateness of the new code being committed, or just be
cluttered by the number of changes and either not respond
in time (longer lead time) or limit the extent of the code
review. Therefore, properly analysing ownership and contribu-
tion seems crucial to properly “componentise” the architecture
at scale effectively. However, we have started describing the
disease, but we have not yet arrived at the actual symptoms.
How can we adequately define contribution? Contribution can
be in for of volume of code being authored, the number of
commits, the code complexity, the number of created tickets,
and other factors.

In this paper, we present a model that aims to distinguish
between the team, which is the “official” or “formal” owner of
a component, vs the team or teams which are the main contrib-
utors. The combination of the metrics and their visualisation
enables the intuitive and easy interpretation of the state of
contribution. While creating the model we have considered the
research on both industrial (e.g., [6], [7]) and OSS (e.g., [9]).
We have combined the metrics and methods they use to create
our model to understand the alignment between ownership
and contribution. In the following, we describe the proposed
model in terms of the Goal-Question-Metric approach [10].
Goal: Analysing the software development projects to measure
developer contributions to identify the alignment or mis-



alignment between ownership and contribution. And how the
alignment impacts technical debt. Questions: How we can
identify misalignment between ownership and contribution?
Does the misalignment impact the growth of technical debt?
Metrics: Number of commits, code complexity, code churn
[11], number of tickets (e.g., Jira), ticket complexity, number
of pull requests, and pull requests complexity.

Although there are resemblances with the code ownership in
OSS development, we want to highlight that we are studying
the role of feam code ownership and its alignment with feam
contribution. We present a case study (Section II) that firstly
led to the creation of a model to calculate the proportion
of contribution to a component (Section III) and secondly
to validate the model (Section IV). We present the initial
results (Section V) and discuss their implications (Section
VI). Finally, we present the related work (Section VII) and
conclude the paper with our future work plan (Section VIII).

II. INDUSTRIAL CASE STUDY

We conducted a case study as part of an ongoing collab-
oration with an industrial partner. This section describes the
goals, sample, data collection, and analysis.

1) Goal: The case study had two goals. The first goal
was to analyse the software development process to mea-
sure developer contributions to identify misalignment between
ownership and contribution. Furthermore, we were interested
in investigating whether the misalignment between ownership
and contribution impacts the accumulation of TD. This anal-
ysis led to the creation of a model (details in Section III) to
assess the alignment between ownership and contribution. The
second goal of the case study was to validate the developed
model with the relevant stakeholders (details in Section IV).

2) Sample and Population: We conducted the case study
with a large company that has chosen to remain anonymous.
The company develops smart banking and financial solutions.
The company is involved in a project profile collaboration with
the research team and the components were selected based
on the availability and convenience. The company wanted to
improve their solutions/products and ways of working and
hence was willing to participate in the study and learn from
its results. The company employs agile practices and DevOps
with autonomous teams working with practices like Scrum
and Kanban. It uses a microservice architecture. Two teams
A and B (with five and four developers respectively), were
selected by convenience and availability. The teams worked on
the main/legacy components and faced the challenges related
to faster accumulation of TD and resolving pull requests.

3) Design: The case study was conducted using bi-weekly
workshop meetings with these two teams for about eight
months (Mar. 2021 — Nov. 2021). The research team (the
authors) and the product manager, the product owner, and
a few developers (whose number ranged from 2-3 depend-
ing on availability and requirement of the meeting) always
participated in the meetings. Each meeting was arranged for
about 30 to 45 minutes. During the first 20 minutes, the
research team presented their findings and conducted focus

Metrics

# of Commits
Code Churn ;

Code Complexity
H Ranking Matrix for
Ticket Complexity Identifying the
Main Contributors
\l Pull Request

Complexity

Input Data Output

Git Data

Ticket Data

# of Pull Requests

# of Tickets

Fig. 1. The Ownership and Contribution Model. The input data is fed to
seven metrics and the model creates the contribution matrix.

groups for the rest of the time. They asked questions to
identify metrics to capture the proportion of contribution and
the root causes of the misalignment between ownership and
contribution. The feedback from the teams then derived the
next meeting sessions. Till mid of Nov. 2021, the feedback of
the focus groups led to the creation of the model whereas the
last focus group session held in end of Nov. 2021 was used
to validate the developed model.

4) Data Collection and Processing: Through the focus
groups (held from Mar. until Nov. 2021), the research team
gathered data regarding formal component ownership. The
research team also collected data from product code, version
control (git), and issue tickets (Jira) to calculate team con-
tribution. The data was collected through APIs provided by
the applications used by the company, e.g., BitBucket API
and Jira API. The collected data was pre-processed to remove
anomalies (incomplete, inconsistent data). Relevant metrics
like size of systems (in LOC), number of commits, code
complexity, code churn, number of tickets, ticket complexity,
number of pull requests, and pull request complexity.

III. THE OCAM MODEL

The purpose behind the Ownership and Contribution Align-
ment Model (OCAM) is to calculate the proportion of the
contribution of teams to a component. Since the contribution
can come from different sources, the model considers contribu-
tions from code production, issuing tickets, and code reviews,
as suggested by Bass et al. [12, pp. 355-356], e.g., code,
issue, and pull request complexity respectively. The model
is created in an iterative process through a case study (see
Section II) while consulting professional developers from a
software development organisation.

The input data for the model is extracted from git and ticket
system APIs. The model uses seven metrics to calculate the
proportion of contribution for each metric for specified time
duration and ranks the contributors. Finally, the model creates
the contribution ranking matrix (see Fig. 1). The ranking
matrix consists of metrics (rows) and teams (columns). A
number is assigned to each cell in a row with the team’s rank



in that particular metric (row). A lower rank shows a higher
proportion of contribution. These metrics are the number of
commits, code churn, code complexity, number of tickets,
ticket complexity, number of pull requests, and pull request
complexity. There are no weights for the metrics in the model.
The metrics can be calculated for individual developers or
teams. The metrics are described in Table I. The flexible nature
of the model allows for removal of the metrics in case the data
for calculating them are not available, i.e., any metric can be
disregarded in the process in case of data limitation. Similarly,
other metrics that can improve the quality of the model can
be included in the model. The final contribution matrix will
be created based on the calculated metrics.

TABLE I
THE OCAM METRICS AND THEIR DESCRIPTIONS. THE METRICS CAN BE
CALCULATED FOR INDIVIDUAL DEVELOPERS OR TEAMS.

Metric
# of Commits

Description

The total number of commits that were pushed to the
repository in a period of time.

The amount of code changed in a period of time, i.e.,
the ratio of written code in the codebase.

Cyclomatic complexity [13] of the written code in a
specific time.

The total number of accepted tickets created in a period
of time.

The complexity of the accepted tickets created in a spe-
cific time. The complexity is calculated by examining
the cyclomatic complexity of changes identified by git
diff to the code in response to the tickets.

The total number of pull requests created in a period
of time.

Code Churn [11]
Code Complexity
# of Tickets

Ticket Complexity

# of Pull Requests

Pull Request

Complexity The complexity of the pull requests created in a specific

time. The complexity is calculated by examining the
cyclomatic complexity of changes to the code identified
by git diff in response to the pull requests.

Data was gathered continuously during the research and was
presented to the team in every meeting. The purpose was to
fine-tune the collection and interpretation of the data. Each
metric in the model is calculated separately. The contributions
are ranked for each metric. Once the metrics are collected, the
contribution matrix is created and presented as a heatmap. Fig.
2 illustrates an example output of the model and represents
a snapshot of a component. By investigating the heatmap,
we can understand the distribution of the contribution to a
component. In this hypothetical example, four teams contribute
to a component owned by Team C. However, the majority
of the code is written by Team A. The misalignment of
contribution and ownership is revealed by investigating the
heatmap. Though the component is owned by Team C, they
are the main contributors only for two metrics. If two teams
have the same number, they are ranked equally. Lastly, in
a case where two teams end up with similar contributions
but different ranks for the metrics, their contributions remain
the area of contribution. Such cases need to be individually
investigated for each category of metrics or further for each
individual metric.

IV. MODEL VALIDATION

After the model creation process, we assessed the model in
practice with the help of the industrial partner. In particular, we

# of Commits Rank

Code Churn

Code Complexity

# of Tickets

Metric

Ticket Complexity]

# of Pull Requests:

.4

Fig. 2. Example heatmap created by OCAM on a component developed by
four teams. The component is owned by team C. 1:4 Most/Least Contribution.

Pull Request Complexity

are interested in testing whether the model can meaningfully
identify the proportion of contributions to a component by
answering the following research question. RQ: 7o what
extent can the proposed model correctly identify developer
contributions to a component?

We collected data from 267 components, developed by the
company, as input for OCAM to investigate the alignment
between ownership and contribution. We used the metrics
provided in the model to create the ranking matrix for iden-
tifying the main contributors for each component. In order to
investigate the impact of the misalignment between ownership
and contribution on TD, we used SonarQube to calculate
effort to repay TD (in minutes) for each component. We used
SonarQube because it is widely used in both industrial and
open-source systems [14] and has been used in other research
studies, e.g., Zabardast et al. [15].

To validate the model, we designed a focus group session
with participation of two product managers, a product owner,
and four developers. The results of the analysis were presented
and discussed among the participants to validate the model
and its accuracy. During the focus group, the participants were
asked two questions for each presented component. /. Was the
detection of misalignment correct or not? and 2. What is the
reason behind the misalignment?

V. INITIAL RESULTS

The model has identified 193 cases of misalignment, i.e.,
components where the owner team is not the main contributor.
The final results of the analysis of 267 components were
presented in a focus group with the participation of the
authors and two product managers, a product owner, and four
developers from teams A and B. Ten components from the
output of the model were selected randomly to check for
the validity of the model. The model correctly detected the
misalignment in all the selected components. Each case was
discussed separately between the researchers and participants.

Furthermore, we want to examine whether the misalignment
between ownership and contribution impacts the accumulation
of TD or not. We selected five components developed by two
different teams (A and B). We extracted the amount of TD



c1 c2

03 0.3 0.3

0.2 0.2 0.2

0.1 0.1

0.0 0.0 0.0

Minutes of TD per Line of Code (LOC)

-0.1 -0.1

2019
2020
Trend 2019
Trend 2020

c3 c4 c5

0.3 0.3

0.2 0.2
0.0

0.0

-0.1

40 0 40 0

20 20
Week Week

21 4 0 20, 20 40
0 Week 0 Week Week

Fig. 3. Technical debt density growth in 2019 and 2020 in five selected components.

density per week during 2019 and 2020'. TD density is the
total amount of TD on a component normalised by its size
[16], [17]. TD density allows us to compare the growth of TD
with its relation to the growth of system size. TD density trends
for these five components are presented in Fig. 3. TD density
in components C2 and C3 increases much faster than the rest.
The OCAM identified misalignment between ownership and
contribution for components C2 and C3, which turned out to
have a different pattern when it comes to the accumulation of
TD. The results of this analysis were presented to teams.

VI. DISCUSSION AND PRACTICAL IMPLICATIONS

OCAM provides an objective way to assess the contribution
of developers from various perspectives. The results can be
used in an informative way, i.e., to clarify the state of owner-
ship and contribution to the developing teams. The results can
help the developing teams approach development tasks more
efficiently. Raising awareness regarding misalignment between
ownership and contribution can help team understand why TD
is increasing faster in some components, and therefore increase
the level of quality required on code that is merged, or even
find an explanation on why they are cluttered by the number
of Pull Requests or bug reports they receive. The initial results
presented in this paper are the first steps to investigate such
factors further. We postulate that early identification of such
misalignment can help organisations act in time to prevent
faster accumulation of TD. Moreover, the model provides
valuable insights for managers when investigating problems
that stem from the organisational structure.

A. Limitations and Threats to Validity

Construct Validity We use different tools for measurements
that reflect the construct of our study. We are aware of the
limitations imposed by the tools. We have selected widely-
adopted, industrial de-facto standard tools, such as Sonar-
Qube, to measure the metrics used for this study. Ownership
and contribution alignment is a complicated and multifaceted
phenomenon to study and there are many dimensions to
consider while studying it. While OCAM presents metrics
from different categories, there might be other metrics not

IThe company uses SonarQube in their development process.

considered on this study, or the ones being considered might
not reflect the ownership vs contribution alignment. We created
the model to be extensible to mitigate the model’s limitations.

Internal Validity As stated above, the problem under study
is complex, and there might be other factors that might
explain some of the findings. We have used a methodological
triangulation [18] to mitigate those threats, using quantitative
and qualitative sources. We continue working on better under-
standing these factors to minimise their impact on the results.

External Validity Another threat to the study is the gen-
eralisability of the results into different contexts out of the
investigated cases. We are aware that our results are strictly
applicable to the studied case. In this study, we are focusing
on analytical generalisability. The goal is to identify potential
signals for misalignment between ownership and contribution.

Reliability Reliability is concerned with the data and the
analysis being independent of the specific researchers. This
is the most significant threat to the validity of our study. By
including the company in focus group sessions for interpreting
the results, we have tried to mitigate this threat.

VII. RELATED WORK

1) Developer Contribution Metrics: There are many met-
rics derived from version control systems such as git that are
used to calculate the amount of developer contribution. de
Bassi et al. [19] provide a collection of code quality metrics.
The authors categorise them in four groups of Complexity Met-
rics, Inheritance Metrics, Size Metrics, and Coupling Metrics.
They successfully evaluate the individual contributions using
quality metrics. Similarly, Diamantopoulos et al. [20] analyse
the contribution of project collaborators in 3000 most popular
Java projects on GitHub. The authors investigate 19 metrics in
2 categories of Development and Operations, e.g., “commits
authored” and “issues participated” respectively for each cate-
gory. Parizi et al. [21], present a git-driven solution to measure
team members’ contribution during the development. They
propose five metrics including number of commits, number
of merge pull requests, number of files, total lines of code,
and time spent to measure contribution. The provided metrics
by the authors do not consider the difficulty of the project.
However, the authors note that the difficulty should always
be considered when evaluating the contribution of developers.



Lastly, Oliveira et al. [22] classify developer productivity into
code-based metrics and commit-based metrics, e.g., “code
owned by time” and ‘“commits/time” respectively for each
category. The authors have interviewed two organisations to
understand the perception and relevance of the metrics in prac-
tice. Their results suggest that there is a “positive impression”
for the adoption of code-based metrics in the organisations.
The studies related to capturing the developer contributions use
similar code-metrics and categories to identify the proportion
of contributions from developers.

2) Architecture and Organisation: The alignment between
architecture (technical dependencies) and organisation (or-
ganisational dependencies), i.e., Conway’s law [4], has been
studied over the years. There are several studies that investigate
socio-technical congruence using different metrics, e.g., [23],
[24]. In an ideal world, the owners of a component should
be solely responsible for developing it. Misalignment between
ownership and contribution might negatively impact the ef-
ficiency of development [24], causing other problems in the
architecture, the organisation, or both. Architectural problems
can manifest as architectural technical debt (ATD). In order
to capture ATD, Bass et al. [12, pp. 355-356] suggest using
three types information including “Source Code”, “Revision
History”, and “Issue Information”. Therefore, misalignment
between architecture and organisation can be a sign of ATD
and a model to identify such misalignment can be helpful.

VIII. CONCLUSIONS

This study aims to create a model to measure the degree
of contribution to components. The contribution is a multi-
dimensional phenomenon that cannot be represented by indi-
vidual metrics. Our model (OCAM) for measuring the degree
of contribution to components uses existing metrics collected
during development without burdening organisations with the
installation of extra tools. The contribution can be assessed
from three main perspectives of written code, issued tickets,
and code reviews.

Our initial analysis of the case study on 267 components
revealed 193 cases with a misalignment between ownership
and contribution. We conducted a focus group session (end of
Nov. 2021) with the developing teams to validate the model’s
findings. We aim to expand the work introduced in this short
paper, first by refining the model and evaluating more cases
using OCAM. In doing so, we plan to improve the model
based on the gathered evidence. Lastly, our goal is to release
the model’s source code and implement the final version of
the model in practice report on our experience.

ACKNOWLEDGMENT

This research was supported by KK foundation through the
SHADE KK-Hog project 2017/0176 and KKS Profile project
SERT 2018/010 at Blekinge Institute of Technology, Sweden.

REFERENCES

[1] S. Newman, Building microservices. ~ O’Reilly Media, Inc.”, 2021.
[2] M. Fowler, “Microservices,” 2014. [Online]. Available: https:/
martinfowler.com/articles/microservices.html

[3]

[4]
[5]
[6]

[7

—

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

S. BaSkarada, V. Nguyen, and A. Koronios, “Architecting microservices:
Practical opportunities and challenges,” Journal of Computer Informa-
tion Systems, vol. 60, pp. 428-436, 9 2020.

M. E. Conway, “How do committees invent,” Datamation, vol. 14, pp.
28-31, 1968.

M. Fowler, “Codeownership,” May 2006. [Online]. Available: https:
/Imartinfowler.com/bliki/CodeOwnership.html

M. Greiler, K. Herzig, and J. Czerwonka, “Code ownership and soft-
ware quality: A replication study,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories. 1EEE, 2015, pp. 2-12.
C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t
touch my code! examining the effects of ownership on software quality,”
in Proceedings of the 19th ACM SIGSOFT and the 13th European
conference on Foundations of software engineering, 2011, pp. 4-14.
M. E. Nordbarg, “Managing code ownership,” IEEE Software, vol. 20,
pp. 26-33, 3 2003.

M. Foucault, J.-R. Falleri, and X. Blanc, “Code ownership in open-
source software,” in Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, 2014, pp. 1-9.
V. R. Basili and H. D. Rombach, “The tame project: Towards
improvement-oriented software environments,” [EEE Transactions on
software engineering, vol. 14, no. 6, pp. 758-773, 1988.

J. C. Munson and S. G. Elbaum, “Code churn: A measure for estimating
the impact of code change,” in Proceedings. International Conference on
Software Maintenance (Cat. No. 98CB36272). 1EEE, 1998, pp. 24-31.
L. Bass, P. Clements, and R. Kazman, Software architecture in practice.
Addison-Wesley Professional, 2021.

T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308-320, 1976.

N. Saarimaki, M. T. Baldassarre, V. Lenarduzzi, and S. Romano, “On
the accuracy of sonarqube technical debt remediation time,” 2079
45th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 317-324, 2019.

E. Zabardast, J. Gonzalez-Huerta, and D. gmite, “Refactoring, bug
fixing, and new development effect on technical debt: An industrial case
study,” 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pp. 376-384, 2020.

M. A. Al Mamun, A. Martini, M. Staron, C. Berger, and J. Hansson,
“Evolution of technical debt: An exploratory study,” in 2019 Joint
Conference of the International Workshop on Software Measurement and
the International Conference on Software Process and Product Measure-
ment, IWSM-Mensura 2019, Haarlem, The Netherlands, October 7-9,
2019, vol. 2476. CEUR-WS, 2019, pp. 87-102.

G. Digkas, A. N. Chatzigeorgiou, A. Ampatzoglou, and P. C. Avgeriou,
“Can clean new code reduce technical debt density,” IEEE Transactions
on Software Engineering, 2020.

P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples. John Wiley and
Sons, 2012.

P. R. de Bassi, G. M. P. Wanderley, P. H. Banali, and E. C. Paraiso, “Mea-
suring developers’ contribution in source code using quality metrics,”
in 2018 IEEE 22nd International Conference on Computer Supported
Cooperative Work in Design ((CSCWD)). 1EEE, 2018, pp. 39-44.

T. Diamantopoulos, M. D. Papamichail, T. Karanikiotis, K. C.
Chatzidimitriou, and A. L. Symeonidis, “Employing contribution and
quality metrics for quantifying the software development process,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, 2020, pp. 558-562.

R. M. Parizi, P. Spoletini, and A. Singh, “Measuring team members’
contributions in software engineering projects using git-driven technol-
ogy,” in 2018 IEEE Frontiers in Education Conference (FIE). 1EEE,
2018, pp. 1-5.

E. Oliveira, E. Fernandes, I. Steinmacher, M. Cristo, T. Conte, and
A. Garcia, “Code and commit metrics of developer productivity: a study
on team leaders perceptions,” Empirical Software Engineering, vol. 25,
no. 4, pp. 2519-2549, 2020.

W. Mauerer, M. Joblin, D. A. Tamburri, C. Paradis, R. Kazman,
and S. Apel, “In search of socio-technical congruence: A large-scale
longitudinal study,” arXiv preprint arXiv:2105.08198, 2021.

M. Kamola, “How to verify conway’s law for open source projects,”
IEEE Access, vol. 7, pp. 38469-38 480, 2019.



