
The Impact of Forced Working-From-Home on
Technical Debt: An Industrial Case Study

Ehsan Zabardast, Javier Gonzalez-Huerta
Software Engineering Research Lab SERL Sweden

Blekinge Institute of Technology
Karlskrona, Sweden

ehsan.zabardast@bth.se, javier.gonzalez.huerta@bth.se

Francis Palma
Department of Computer Science and Media Technology

Linnaeus University
Kalmar, Sweden

francis.palma@lnu.se

Abstract—Background: The COVID-19 outbreak interrupted
regular activities for over a year in many countries and resulted
in a radical change in ways of working for software development
companies, i.e., most software development companies switched
to a forced Working-From-Home (WFH) mode. Aim: Although
several studies have analysed different aspects of forced WFH
mode, it is unknown whether and to what extent WFH im-
pacted the accumulation of technical debt (TD) when developers
have different ways to coordinate and communicate with peers.
Method: Using the year 2019 as a baseline, we carried out an
industrial case study to analyse the evolution of TD in five
components that are part of a large project while WFH. As
part of the data collection, we carried out a focus group with
developers to explain the different patterns observed from the
quantitative data analysis. Results: TD accumulated at a slower
pace during WFH as compared with the working-from-office
period in four components out of five. These differences were
found to be statistically significant. Through a focus group, we
have identified different factors that might explain the changes in
TD accumulation. One of these factors is responsibility diffusion
which seems to explain why TD grows faster during the WFH
period in one of the components. Conclusion: The results suggest
that when the ways of working change, the change between
working from office and working from home does not result
in an increased accumulation of TD.

Index Terms—Technical Debt, Empirical Study, Industrial
Study, Case Study, COVID-19, Telework, Work From Home

I. INTRODUCTION

Technical Debt (TD) is a metaphor to explain the long-term
consequences of sub-optimal decisions taken to give priority to
speed on deliveries [1] and deals primarily with non-visible as-
pects and issues of software development, and its maintenance
[2]. Technical and design decisions influence the introduction
of TD. However, we should not forget that those decisions are
taken by humans (e.g., developers, architects, testers) in their
daily work. The environment and the conditions in which the
work is done can significantly impact whether or not we take
the best solution at hand and, therefore, whether we incur TD.
The communication and coordination among members within
and outside the team in the organisation might be a factor
that influences how developers incur and repay TD [3]. These

This research was supported by the KKS foundation through the SHADE
KKS Hög project with ref: 20170176 and through the KKS S.E.R.T. Research
Profile with ref. 2018010 project Blekinge Institute of Technology, SERL
Sweden.

working conditions might affect how and when we take actions
to mitigate and payback TD.

In March 2020, with the COVID-19 pandemic, software
development organisations had to confront a challenging sit-
uation: how to continue their activity working 100% on
distance, with their employees working from home (WFH).
This new way of working is different from distributed soft-
ware development, in which teams are located in different
sites. Therefore, in distributed software development, intra-
team communication happens face-to-face. In contrast, inter-
team communication usually should be mediated using instant
messaging and video conference tools, while in WFH, even
intra-team communication should be mediated with online
tools. This sudden change exposed organisations to many
challenges, uncertainties, and risks. There have been studies
to analyse changes in the working routines of developers [4]–
[7]. However, very little is known about the influence that
WFH had on TD. Some companies suggest a change in their
working strategy after the pandemic, enabling their employees
to work from distance. Therefore, it is important to understand
how software artefacts degrade considering different ways of
working.

In this paper, we present the results of an industrial case
study to analyse how the introduction and repayment of
TD have fluctuated during the first nine months of working
from home by studying several repositories from a software
development organisation. The case study comprises two dif-
ferent data collection methods. On the one hand, we collected
quantitative data utilising archival analysis. On the other hand,
we carried out a focus group with the development team to
collect qualitative data. The goal of this mixed-method is to
triangulate data to strengthen the evidence. We address the
following research question: RQ: How the forced Working-
From-Home mode impacted the accumulation of technical
debt?

More specifically, whether and to what extent WFH im-
pacted the accumulation of TD when developers have different
ways to coordinate and communicate with peers.

The remainder of this paper is structured as follows. In
Section II, we present the design of the study while Section III
presents the results. Section IV discusses the main findings and
Section V summarises the threats to validity. In Section VI,



we discuss related work in the area. Finally, Section VII draws
our conclusions and discusses further work.

II. RESEARCH METHODOLOGY

To address the research question, we carried out an indus-
trial case study that combines archival and qualitative data
collected from git repositories, SonarQube, and a focus
group. Fig 1 shows our research methodology.

Measure 
TD

Archival Data

Quantitative 
Analysis

Qualitative
Analysis 

Focus Group

Fig. 1. The research methodology.

This study is conducted in an industrial setting and com-
prises the analysis of five components developed by a company
that has chosen to remain anonymous. The company is a
large software development company that develops web-based
financial and accountancy services. It is a mature company in
its development practices and has well-established, successful
products. The case has been selected by convenience (avail-
ability and access). The company is interested in continuously
improving its products and ways of working. Therefore, it was
willing to participate in the study and learn from its results.

We are presenting an embedded case study [8] where we
are analysing five components (units of analysis), which are
mainly written in Java. The analysis period of all components
spans two years (2019 and 2020).

In the following, we describe the main constructs and mea-
surements used for the quantitative analysis in this research, as
illustrated in Fig 2. We calculated the amount of accumulated
TD per week for each component. We used SonarQube1 to
calculate the amount of TD in each component and calculated
the amount of code using gitlog. The company uses SonarQube
for controlling code quality and as a proxy for TD in the
development process. Moreover, SonarQube has been used in
similar studies on the topic of TD, e.g., [9], [10].

A. Data Collection

1) Quantitative Data: The data gathered from SonarQube
is the issues detected by the quality profile and gate2 selected
by the company. The issues are representative of the quality
profile and quality gate. The data is collected via the com-
pany’s SonarQube API and therefore is representative of what
the company considers TD. The tool provides the estimated
time (i.e., effort in minutes) required to resolve the issues. The
accumulated TD of a component is the total remediation time
for all the issues detected. We considered repaid TD when
issues are tagged as ‘fixed’ and ‘closed’.

1Version 8.9.6 LTS at https://www.sonarqube.org
2https://docs.sonarqube.org/latest/user-guide/quality-gates/

M
ea
su
re
m
en
t

C
on

st
ru
ct System Size

Technical Debt 
(Sonarqube)

Java and XML 
LOC

Technical Debt

Technical Debt 
Density

Technical Debt
Normalised by

Size (LOC)

Represents

Derived by 

Legend

Measurement

Construct

Fig. 2. Study constructs and measurements.

To calculate TD density, we used the growth in the size
of the system reported by git log, as added lines of code
minus deleted lines of code. Table I presents the details of
the investigated components in this study.

TABLE I
INVESTIGATED COMPONENTS’ SIZE AND NUMBER OF COMMITS.

ID Size (KLOC) # commits in 2019 # commits in 2020
C1 6.2 314 292
C2 9 315 362
C3 4.8 163 352
C4 14 404 269
C5 6.5 149 499

Total 40.5 1,345 1,774

2) Qualitative Data: The results of the quantitative anal-
ysis were presented to the development team (see Table II)
responsible for the development of the five components in
a focus group session. The developers provided descriptions
and explanations for what they thought were the reasons
behind some of the most prominent changes in TD or size
during the analysed period, and their experience with factors
that impacted the accumulation of TD. The statements were
collected via sticky notes and the transcript of the focus group
session. The length of the focus group was 60 minutes, and six
members (out of a total of 8 in the team) participated in the
session. In order to complement the statements, we recorded
and transcribed the conversation during the focus group. The
focus group included the following steps:

TABLE II
FOCUS GROUP PARTICIPANT INFORMATION.

Experience (years)
Role In Company Overall

Product Owner 8 21
Development Manager 2 18

Product Owner 4 9
Senior Developer 12 12
Senior Developer 2 6

Scrum Master 5 5

• Participants introduced themselves and their roles in the
team.



• The authors of this paper presented a summary of the
results and explained the focus group procedure.

• Participants answered questions regarding the results of
the quantitative analysis.

– Participants read each question. They had five min-
utes to think about each question. They wrote their
answers and opinion on sticky notes and posted them
at the end of the time altogether.

• Participants and researchers had a closing discussion
where they discussed the details of the results.

B. Data Analysis

The data analysis is divided into two sections where we
analyse the quantitative and qualitative data separately.

1) Quantitative Data Analysis: To evaluate the state of each
component, we use TDdensity . TDdensity is the normalised
amount of TD per line of code [11], [12]. Plotting TDdensity

over time will allow us to visualise the changes in TD density
and their trend. The weeks from 2019-01-01 to 2020-03-11
were considered as office and the weeks from 2020-03-11 to
2020-12-31 were considered as WFH.

For comparing whether there were differences in the TD
density while working in the office vs WFH, we use the t-test
for independent samples (at the significance of 0.05) in case
the samples were normally distributed or the Mann-Whitney
tests in case the samples were not normally distributed [13].
For assessing whether each sample (i.e., Office and WFH)
were normally distributed, we used the Shapiro-Wilk Test [13].

2) Qualitative Data Analysis: The main input for the
qualitative data analysis is the statements provided by the
focus group participants. We have used In Vivo Coding to
label the statements. In Vivo coding is suitable for labelling
raw data in the first cycle coding. It prioritises the opinions
of the interviewees [14]. The coding was done by two authors
independently. Then we compared all the labels and discussed
the conflicting cases with the help of the third author.

For the second cycle coding, we have used Pattern Coding
to create the themes from the labels from the previous step.
Pattern coding allows us to identify the themes from the
data [14]. One of the authors extracted the emerging themes
and later discussed them with all authors to agree on themes.

III. RESULTS

A. Results from the Quantitative Data Analysis

Fig 3 illustrates the data for the quantitative data analysis, in
which each row depicts a different component. The blue colour
is used for year 2019 and red for year 2020. The vertical
black line is used to mark the week in which the company
switched to forced WFH—in 2020. The horizontal scale on
each graph represents the weeks ranging from 1 to 52. For
each component, we present the results using four different
graphical representations (four columns). These columns are:

• Column I: TD per Week shows the amount of TD in
a component per week. The positive and negative values
represent introduced and repaid TD, respectively.

• Column II: Accumulated TD shows the accumulated
TD during each year. The dashed blue and red lines are
trends for the years 2019 and 2020, respectively, and have
been calculated using the linear regression function of
Scipy package3, version 1.6.1 for Python 3.8.

• Column III: Component Size Growth shows the change
in the component size during each year. The size is
calculated only considering Java and XML files since
the quality gate only considers issues related to Java
and XML.

• Column IV: TD Density shows TD normalised per LOC
during each year. The dashed blue and red lines are
trends for the years 2019 and 2020, respectively, and have
been calculated using the linear regression function of the
Scipy package version 1.6.1 for Python 3.8. The trend
lines in Column IV are all significant (p− value < 0.5).
For C1, C2, C3 and C5, the trend lines explain < 50%
of the variance (R2 < 50%). However, for C4WFH , the
trend line is higher and explains 75% of the variance
(R2 = 74.86%) and for C4office the trend line is slightly
lower than 50% (R2 = 43.89%).

We observe statistically significant differences in the
changes of TDdensity in all components when comparing
2019 and 2020. We observe that, when working from office,
components C1, C2, C3, and C5 incur more TD, i.e., on
average TDdensity is higher during 2019. Therefore, the
accumulated TDdensity introduced since the beginning of the
year 2019 is higher than the year 2020 during the WFH period.
Conversely, component C4 incurs more TD when working
from home, i.e., on average TDdensity is higher during 2020.
Therefore, the accumulated TDdensity introduced since the
beginning of the year 2019 is lower than the year 2020 during
the WFH period.

TABLE III
DESCRIPTIVE STATISTICS FOR EACH COMPONENT FOR TD DENSITY.

Component N Min. Max. Mean Median
C1office 51 0.02 0.18 0.09 0.09
C1WFH 46 0.04 0.1 0.05 0.04
C2office 51 0.03 0.12 0.1 0.1
C2WFH 52 0 0.09 0.07 0.08
C3office 51 0.06 0.17 0.11 0.11
C3WFH 50 0 0.06 0.03 0.03
C4office 51 0.04 0.16 0.12 0.12
C4WFH 50 0 0.37 0.27 0.3
C5office 49 0 0.16 0.08 0.06
C5WFH 50 0 0 0 0

Table III summarises the descriptive statistics for TD density
per week. We applied the Mann-Whitney test, provided that
the samples were not normally distributed. The results of the
Mann-Whitney test are as follows:

• C1. The test result shows that there are significant differ-
ences in the introduced TDdensity when working from
office as compared to WFH (W = 2203, p=0.000).

3https://www.scipy.org



C1

C2

C3

C4

C5

A

B

C

D

I - TD per week II - Accumulated TD III - Component Size Growth IV - TD Density

Fig. 3. Results of the quantitative analysis for five components. Column I shows TD per week; Column II shows the accumulated TD; Column III shows the
component size growths; and Column IV shows the TD density.



• C2. The test result shows that there are significant differ-
ences in the introduced TDdensity when working from
office as compared to WFH (W = 2307, p=0.000).

• C3. The test result shows that there are significant differ-
ences in the introduced TDdensity when working from
office as compared to WFH (W = 2544, p=0.000).

• C4. The test result shows that there are significant dif-
ferences in the introduced TDdensity WFH as compared
to working from office (W = 263, p=0.000).

• C5. The test result shows that there are significant differ-
ences in the introduced TDdensity when working from
office as compared to WFH (W = 2404.5, p=0.000).

B. Results from the Qualitative Data Analysis

In the focus group, we summarised the results presented in
Section III-A to the developers, and asked them to elaborate on
the results. We recorded the number of participants who agreed
on each statement (ratio of agreement in Fig 4). Example
statements are provided.

• Question: Is there any explanation for the change of TD
in each component or on the team’s ways of working? The
statements from developers suggest that there are several
different reasons for the accumulation of TD in each
component. The summary of possible explanations for
the accumulation of TD in the investigated components
are (ordered by level of agreement among participants):

– Changes in mob programming (5.6/6): The develop-
ment team engaged in less mob programming. The
developers state that they changed to individual pro-
gramming, which is not as effective while working
from home, and it impacts the accumulation of TD.
“a change from working in a mob towards working
more individually”

– Growth in the complexity (5/6): Growth in com-
plexity of the component makes TD growth faster.
“company growth, new products and projects”

– Responsibility diffusion (5/6): Having many exter-
nal contributors to the repository, i.e., responsibility
diffusion, impacts the accumulation of TD. “[the
component] has a lot of contributors outside our
team”

– Switch to another framework (4/6): Migration to a
new framework impacts the accumulation of TD.
“switch to [a new framework] lead to many changes
over many components”

– Growth in size (4/6): Growth in the component via
new development impacts the accumulation of TD.
“2020 seems to have had larger changes”

– Multiple implementations (4/6): Multiple implemen-
tations of (a part of) code base impact the accumu-
lation of TD. “multiple implementations [...] may
increases TD”

– Backward compatibility (4/6): Backward compatibil-
ity might impact the accumulation of TD. “backward
compatibility may increase TD”

There are points of interest in some of the charts presented
in Fig 3, e.g., in component C1, Column II marked with A
which is a significant increase in the introduction of TD at the
beginning of both 2019 and 2020. To elaborate on such points
of interest, we asked developers specific questions regarding
such observations. These are four observations marked as A,
B, C, and D in Fig 3.

• A: Why are there steep increases in TD in both years at
the beginning of the year? The developers stated that this
steep increase in TD correlates to the migration to a new
framework and duplication of work because of “project
rework”. Ration of agreement in the focus group for this
answer was 5/6.

• What do you think is the reason behind this steep
increase in TD?

– B: The developers state that this steep increase in
TD correlates to the introduction of new code, refac-
toring, security maintenance work, code duplication,
and TD on tests. Ration of agreement in the focus
group for this answer was 6/6.

– C: The developers state that this steep increase in TD
correlates to the duplication of functionality, TD on
tests, development of new features and functionality,
and refactoring. Ration of agreement in the focus
group for this answer was 6/6.

– D: The developers state that this steep increase in TD
correlates to the integration of a new external library
to an already complex code. Ration of agreement in
the focus group for this answer was 6/6.

The statements provided by the participants were collected
via sticky notes. We analysed the statement to extract labels
and themes, as described in Section II-B. We extracted three
main themes of factors that the participants in the focus group
perceive might have an impact on the growth of TD including:
source-code-related factors, laws-of-evolution-related factors,
and ways-of-working-related factors. The results of the the-
matic analysis are summarised in Fig 4.

The source-code-related factors include code, architecture,
and design decisions that impact the growth of TD such
as change of framework, multiple implementation of a com-
ponent, and backward compatibility of a component. The
laws-of-evolution-related factors include continuous change
and increasing complexity [15] that impact the growth of
TD, such as growth in size and growth in complexity. The
ways-of-working related factors include communication and
coordination of the team that impact the growth of TD, such as
changes in mob programming and contributions of developers
outside of the team.

Regarding ways-of-working-related factors, the participants
in the focus group pointed out that the component C4 does
not have a clear ownership. The team that formally owns the
component is not among the main contributors in terms of the
number of revisions or the volume of code being contributed
to the component (i.e., when analysing the whole history of
the component, the owning team was the fourth in the number



Focus
Group

Is there any explanation 
for the change of TD in 
each system or team's 

ways of working?

Why are there steep
increases in TD in
both years at the
beginning of the year?

What do you think is
the reason behind this
steep increase in TD?

What do you think is
the reason behind this
steep increase in TD?

What do you think is
the reason behind this
steep increase in TD?

Changes in 
mob programming

Switch to another framework

Growth in size

Responsibility Diffusion

Growth in complexity

Multiple implementations

Backward compatibility

Less mob 
programming

Effectiveness 
of mob

programming 
in WFH

Change to more 
individual 

programming

Change of framework

Project rework

New code

Refactoring

Security related work

Code duplication

TD on tests

Duplication of functionality

TD on tests

Development of new 
features and functionality

Integration problems

Integration of 
new external library

Code complexity

Due to the
addition of
 the new
external library

Questions Regarding Overall Results Questions Regarding Points of Interests
A B C D

A

B

D

C

Legend Ways- of- Working- Related Factors Laws- of- Evolution- Related Factors Source- Code- Related Factors

6/6

6/6

5/6

4/6

4/6

5/6

5/6

4/6

4/6

Ratio of Agreement:
5/6

Ratio of Agreement:
6/6

Ratio of Agreement:
6/6

Ratio of Agreement:
6/6

Fig. 4. Summary of the results of the qualitative analysis. The number next to the factors represent the ratio of agreement among the participants.

of total revisions). The owning team acts as “gate keepers”
(i.e., in their own words) in the sense that members of this
team are responsible for rating the pull requests, but the team
does not have full control over the code being included in the
component. This is a clear case of responsibility diffusion [16],
where many other teams are contributing to a component, and
no one takes the required code maintenance actions to keep the
code in shape and/or repay TD. We observe that, apparently,
in component C4, the effect of responsibility diffusion on
TD seems to be exacerbated during the WFH period, with
less pair or mob programming and more difficult inter-team
communication.

IV. DISCUSSION

In this section, we discuss our results with regards to the
research question and its practical implications.

A. Impact of Forced Working-From-Home on Technical Debt

As highlighted in Section III, the week-by-week statistical
analysis show statistically significant differences. TD is ac-
cumulating at a faster pace in the component C4 during the
forced WFH period while in the other components TD seems
to accumulate faster when working from office. The developers
expected the decrease in TD accumulation: “A gut feeling is
that technical debt should not have increased during WFH -

rather decreased. Sharing screens and discussing feels more
natural when working remotely.” Our results show that the
practices used by the developers during WFH such as screen
sharing and impromptu meetings have helped decrease the
accumulation of TD.

We investigated the faster increase of TD growth in com-
ponent C4. Further investigation of the contributions revealed
that developers from other teams are the main contributors
to this component. There are 77 developers from 17 teams
contributing component C4. The impact of responsibility dif-
fusion on the growth of TD is highlighted as a major factor
by the developers. Tornhill [16] suggests that the developers
who do not own the code tend to disregard “responsibility for
the quality and future of a piece of code” which is aligned
with our observations and results. The gatekeeping solution
can also, in the long run, have negative consequences for the
system due to review fatigue [16].

Overall, the results suggest that even when the ways of
working change, e.g., less mob programming, the change
between working from office and working from home does
not result in increasing accumulation of TD. However, in
cases where there are many different teams contributing to a
component and there is no clear ownership of the component,
the change from working from office to working from home
may result in an increase pace in the accumulation of TD.



The results of the qualitative data analysis show that differ-
ent factors can impact the accumulation of TD. These potential
factors can be divided into source-code, laws-of-evolution,
and ways-of-working-related factors. While we expect all the
potential factors to impact TD, we observe that the impact of
ways-of-working related factors can be exacerbated by forced
WFH mode in the components with less clear ownership, as
stated by the participants in the focus group.

B. Practical implications

Many different factors and their circumstances can impact
the accumulation of TD. This case study does not provide a
complete list of factors. If the changes are sudden and unex-
pected, e.g., changes in ways-of-working (forced WFH), they
might have an impact on the growth of TD. Clear ownership
of the code is a factor that can keep the growth of TD under
control. The communication and coordination problems that
might occur during forced WFH combined with problems
in code ownership might result in the faster accumulation
of TD getting out of control. The development team and
developers can mitigate the impact of such unexpected changes
by keeping each factor in check, in isolation, e.g., by reducing
responsibility diffusion.

V. THREATS TO VALIDITY

In this section, we discuss the main threats to validity
from four different perspectives [8]: construct validity, internal
validity, external validity, and reliability.

Construct validity is the degree to which the measures
studied can reflect the constructs that the researcher is aiming
at and have been defined in the research questions [17]. We
use SonarQube, which is a widely-adopted, de-facto standard
used in industry to search for TD [18], and that has been
used in similar other research studies (e.g., [10], [12]). We
also rely on a metric TDDensity [11], that has been used to
monitor the impact of external factors (e.g., Clean Code) in [9].
The calculation of TDDensity also takes the component’s size
as input, and for its calculation, we only considered Java
(source code and tests) and XML files (integration tests). To
mitigate potential threats regarding the size calculations, the
selection of the file types was made in consensus with the
heads of development in the studied company. The repaid TD
is calculated through the issues flagged as ‘fixed’ and ‘closed’.
However, there might be cases where TD has been removed
by deleting the files that might not be included in our analysis.
Finally, we have used a set of commonly accepted statistical
tests employed in the empirical SE community.

Internal validity concerns whether there might be other
factors that might explain some of the findings. We have
used a methodological triangulation [19] to mitigate those
threats, using quantitative and qualitative sources. From the
qualitative data, we understood that, for example, the lack
of formal ownership and the usage of a quality gate might
explain the uncontrolled growth of TD in the WFH period.
However, there might be other reasons, and further studies
are needed to understand better additional factors that can

explain this exacerbated growth. There might be other non-
studied factors that can explain the differences in TD during
the studied periods.

External validity concerns the generalisability of the results
into different contexts out of the investigated cases. Our results
are strictly applicable to the studied case. One of the common
misunderstandings about case study research is the inability to
generalise from single cases [20]. We focus on analytical gen-
eralisability rather than statistical generalisation, comparing
different components and searching for plausible explanations
within the development team, and trying to extract themes that
can explain the differences in observations.

Reliability validity concerns whether the data and the anal-
ysis are independent of the specific researchers. This might
be a significant threat to the validity of this study. We tried
to mitigate this threat by first involving the studied company
in interpreting the results instead of restricting the analysis to
a pure comparison of two data frames. Second, we tried to
improve the reliability of the qualitative analysis by doing a
separate blinded coding.

VI. RELATED WORK

This section summarises studies from findings on WFH
regarding software development and productivity, working
patterns and TD, and measuring the TD trend.

Studies Analysing the Impact of WFH: One of the earliest
studies during the COVID-19 pandemic by Bao et al. [6]
analysed developers’ activity records to understand the impact
of WFH on productivity. The interest group is 139 developers
in Baidu Inc, China. The dataset is obtained between Dec.
2019 and Mar. 2020 and compared with the corresponding
months in 2018 and 2019. However, no generalised observa-
tion could be made, i.e., although WFH has different impacts
on developers’ productivity, this varies by the project age, type,
language, and size. Also, the productivity of the majority of
the developers when WFH is similar to the office. Smite et
al. [21] studied work patterns for a geographically distributed
software development company to understand how employees
cope with the WFH mode. Findings suggested that during the
WFH, engineers follow daily routines similar to onsite work.
Moreover, there is no significant change in code production
comparing the onsite and WFH code commits. The authors
reported an increased flow and productivity in some instances
(e.g., familiarity with the tasks) due to a lack of spontaneous
interruptions from colleagues and shorter breaks.

Working Patterns and TD: In an industrial case study,
Codabux and Williams [22] reported that developers primarily
focus on design, testing, and defect-related TD in an agile
setting. In the agile and distributed environment, developers
often create their taxonomy of TD subject to the type of
tasks they were assigned and their understanding. Yli-Huumo
et al. [23] provided an exploratory, qualitative case study
interviewing 25 engineers in eight development teams and
analysing empirical data to understand TD management. TD
management was done systematically for most of the teams



working in a distributed environment, i.e., managers reserved
20% of the development time to improve the code base and
refactor TD issues.

Measuring the TD Trend: When it comes to analysing TD in
a project, there are tools available (e.g., SonarQube) that report
the number of TD items. These tools can use that information
to estimate the total time to remediate them, approximating the
TD principal level accumulated in the project. However, using
this information to assess the TD evolution over time might
be problematic, especially if we want to establish comparisons
between two different periods or compare evolution across
different systems. If we compare two periods of time in
which the development activity resulted in the volume of code
being added to the systems differs substantially, analysing only
the accumulated TD principal might lead us to the wrong
conclusions.

The density of TD or TDdensity [11], [12] defined as the TD
normalised per line of code, can allow us to reason about the
evolution and the impact that external factors might have on
the accumulation of TD [11], [12]. In [12] analyses the impact
that clean code might have on TD. In this particular case,
TDdensity reflects how the TD density tends to decrease when
the newly added code is cleaner. In contrast, the deletion of
high-quality code causes an increase in TD density. Thus, the
system’s maintainability during evolution might be strongly
associated with the TDdensity [12].

With forced WFH mode and the newly adopted work from
anywhere, the state of TD needs to be investigated in-depth.
The ways of working impact TD, e.g., whether developers are
working remotely or at the designated work-space co-located
with their peers [3]. Using TDdensity can allow us to draw
better conclusions regarding its potential impact.

VII. CONCLUSION

TD reflects the long-term consequences of sub-optimal deci-
sions taken to accomplish short-term design and development
goals [1]. Due to the global COVID-19 outbreak, developers
are forced to work from home worldwide. We investigated the
impact of forced WFH on the accumulation of TD. We showed
the accumulation of the TD in terms of TD density.

We analysed five components to study the impact of forced
WFH on the accumulation of TD in an industrial case. While
comparing the accumulation of TD between the pre-pandemic
(in 2019) and pandemic (in 2020) times, the tests showed
statistically significant increase in the accumulation of TD
in one component identified with lack of ownership and
responsibility diffusion.

Based on the focus group, we identified that factors related
to source-code, laws-of-evolution, and ways-of-working are
among the factors that impact the growth of TD. We plan
to extend and replicate this study on other components and
in other organisations, which may strengthen the evidence
regarding the impact of WFH on the accumulation of TD.
We also want to examine other confounding factors (e.g., size
of the systems, developers’ experience, working conditions at

home, etc.) in relation to forced WFH and TD accumulation.
Finally, we plan to explore how the misalignment between
ownership and contribution impacts TD.

REFERENCES

[1] W. Cunningham, “The wycash portfolio management system,” ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1993.

[2] P. Kruchten, R. Nord, and I. Ozkaya, Managing Technical Debt: Reduc-
ing Friction in Software Development. Pearson, 2019.

[3] R. Bavani, “Distributed agile, agile testing, and technical debt,” IEEE
software, vol. 29, no. 6, pp. 28–33, 2012.

[4] D. Smite, N. B. Moe, E. Klotins, and J. Gonzalez-Huerta, “Work Patterns
of Software Engineers in the Forced Working-From-Home Mode,” arXiv
preprint arXiv:2101.08315, 2021.

[5] P. Ralph, S. Baltes, G. Adisaputri, R. Torkar, V. Kovalenko, M. Kali-
nowski, N. Novielli, S. Yoo, X. Devroey, X. Tan et al., “Pandemic
programming: how covid-19 affects software developers and how their
organizations can help,” arXiv preprint arXiv:2005.01127, 2020.

[6] L. Bao, T. Li, X. Xia, K. Zhu, H. Li, and X. Yang, “How does working
from home affect developer productivity?–a case study of baidu during
covid-19 pandemic,” arXiv preprint arXiv:2005.13167, 2020.

[7] N. Forsgren, “Octoverse spotlight: An analysis of developer productivity,
work cadence, and collaboration in the early days of covid-19,” 2020.

[8] R. Yin, Case Study Research: Design and Methods, ser. Applied Social
Research Methods. SAGE Publications, 2009.

[9] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Ampat-
zoglou, “How do developers fix issues and pay back technical debt in the
apache ecosystem?” in 2018 IEEE 25th Int. Conf. on Software analysis,
evolution and reengineering (SANER). IEEE, 2018, pp. 153–163.

[10] E. Zabardast, J. Gonzalez-Huerta, and D. Šmite, “Refactoring, bug
fixing, and new development effect on technical debt: An industrial case
study,” in 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 2020, pp. 376–384.

[11] M. A. Al Mamun, A. Martini, M. Staron, C. Berger, and J. Hansson,
“Evolution of technical debt: An exploratory study,” in 2019 Joint
Conference of the International Workshop on Software Measurement and
the International Conference on Software Process and Product Measure-
ment, IWSM-Mensura 2019, Haarlem, The Netherlands, October 7-9,
2019, vol. 2476. CEUR-WS, 2019, pp. 87–102.

[12] G. Digkas, A. N. Chatzigeorgiou, A. Ampatzoglou, and P. C. Avgeriou,
“Can clean new code reduce technical debt density,” IEEE Transactions
on Software Engineering, 2020.

[13] A. Field, Discovering statistics using IBM SPSS statistics. Sage, 2018.
[14] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.
[15] M. M. Lehman, “Laws of software evolution revisited,” in European

Workshop on Software Process Technology. Springer, Berlin, Heidel-
berg, 1996, pp. 108–124.

[16] A. Tornhill, Software Design X-Rays: Fix Technical Debt with Behav-
ioral Code Analysis. Pragmatic Bookshelf, 2018.

[17] P. Ralph and E. Tempero, “Construct validity in software engineering
research and software metrics,” in 22nd International Conference on
Evaluation and Assessment in Software Engineering. Christchurch,
New Zealand: Association for Computing Machinery (ACM), 2018.

[18] A. Martini, T. Besker, and J. Bosch, “Technical debt
tracking: Current state of practice a survey and multiple
case study in 15 large organizations,” Science of Computer
Programming, vol. 163, pp. 42–61, 2018. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0167642318301035

[19] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples. John Wiley and
Sons, 2012.

[20] B. Flyvbjerg, “Five misunderstandings about case-study research,” Qual-
itative Inquiry, vol. 12, no. 2, pp. 219–245, 2006.

[21] D. Smite, N. B. Moe, E. Klotins, and J. Gonzalez-Huerta, “Work patterns
of software engineers in the forced working-from-home mode,” arXiv
preprint arXiv:2101.08315, 2021.

[22] Z. Codabux and B. Williams, “Managing technical debt: An industrial
case study,” in 2013 4th International Workshop on Managing Technical
Debt (MTD). IEEE, 2013, pp. 8–15.

[23] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software
development teams manage technical debt?–an empirical study,” Journal
of Systems and Software, vol. 120, pp. 195–218, 2016.


